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Abstract. We study the heavy Higgs sector of the MSSM composed of the H±, H0 and A0 particles in the
so-called decoupling limit where mA0 � mZ . By integrating out these heavy Higgs particles to one-loop,
we compute the effective action for the electroweak gauge bosons and find out that, in the decoupling
limit, all the heavy Higgs effects can be absorbed into redefinitions of the Standard Model electroweak
parameters. This demonstrates explicitely that the decoupling theorem works for the heavy MSSM Higgs
particles. This is also compared with the paradigmatic and different case of the Standard Model heavy
Higgs particle. Finally, this work together with our two previous works, complete the demonstration that
all the non-standard particles in the MSSM, namely, squarks, sleptons, charginos, neutralinos and the
heavy Higgs particles, decouple to one-loop from the low energy electroweak gauge boson physics.

1 Introduction

The absence of any signal from Supersymmetric (SUSY)
particles in the existing data indicates that either SUSY
theories are not the proper ones for low energy physics
beyond the Standard Model (SM) or the SUSY spectrum
is above the available energies at present experiments. In
the simplest SUSY theory, the Minimal Supersymmetric
Standard Model (MSSM), the predicted spectrum is com-
posed of squarks q̃ and sleptons l̃, ν̃ for the three gener-
ations, charginos χ̃±

1,2, neutralinos χ̃
o
1,2,3,4, gluinos g̃, and

the Higgs sector with five Higgs particles, two CP-even
Higgs bosons ho and Ho, a CP-odd or pseudoscalar Higgs
boson Ao, and two charged Higgs particles H±. Although
the precise mass bound varies for each particle, it is clear
that, at present time, there is little room for light MSSM
particles, say lighter than the W gauge boson mass mW .
Particularly stringent are the bounds for the strongly in-
teracting particles, the squarks and gluinos with a lower
mass limit already above 200GeV [1]. Under these circum-
stances it is a reasonable hypothesis to think of a mass gap
between the SM particles and the genuine MSSM parti-
cles. In case this energy separation occurs, its size should
not be larger than about 1TeV , if the MSSM is required
to repair the hierarchy problem. We will assume here the
extreme but plausible situation where all the MSSM spec-
trum lay well above the electroweak scale MEW . For the
purpose of this paper we just need to assume the exis-
tence of this sizeable gap, but the particular value of the
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gap width is not relevant. There is just one exception in
this large SUSY mass assumption, the lightest CP-even ho
particle which stays close to the SM spectrum. It is well
known that when the pseudoscalar massmAo is very large,
that is much larger than the Z boson mass mAo � mZ ,
the heavy CP-even, CP-odd and charged Higgs bosons are
nearly degenerate, mHo � mH± � mAo , while the ho par-
ticle reaches its maximal mass value which, at tree level,
is bounded from above by mZ , and when radiative cor-
rections are included, this upper bound is shifted towards
∼ 130GeV [2–14]. In this so-called decoupling limit [15],
the lightest SUSY Higgs boson ho and the SM Higgs boson
HSM have very similar properties, since both have simi-
lar couplings to fermions and vector bosons and therefore
the task of discriminating between these two particles will
be quite hard. This equality of couplings is exact at tree
level when the decoupling limit is reached asymptotically
and both their production rates and decay branching ra-
tions are identical. However, it is not known with complete
generality if this equality remains beyond tree level. It is
a very interesting subject, since in case it does not hap-
pen it will provide the clue for discriminating between the
SM and MSSM, even in the extreme situation mentioned
above where all the rest of the MSSM spectrum is well
above the electroweak scale and hence not reachable at
present experiments. This topic has been studied by sev-
eral authors [15–31] by looking to particular observables
of interest in phenomenology, as for instance, the param-
eters S, T and U1 that measure the radiative corrections
at LEP [15,28,29], the ho production rates at LEP and
LHC and the decay branching rations of ho to γγ [24]

1 or equivalently ∆r, ∆ρ, ∆κ or the εi parameters



488 A. Dobado et al.: The Higgs sector of the MSSM in the decoupling limit

and to ff̄ [20,30,31]. Most of these studies analyzed the
decoupling of SUSY particles numerically. Although the
numerical analysis are complicated since they depend on
many MSSM parameters, there are indications from these
studies that the SUSY particles indeed tend to decouple in
the previous observables when the SUSY masses are taken
numerically very large. In particular, the MSSM ho cou-
plings to γγ [24] and to ff̄ [30] seem to approach those
of the HSM particle in the decoupling limit and in the
one loop approximation, confirming therefore the enor-
mous challenge that will be discriminating between these
two particles at future high energy colliders as the LHC.
In this paper we study the MSSM Higgs sector in the

decoupling limit at a more formal level. Our object of in-
terest is the effective action for the SM particles and the
contributions to this action from the loops of the MSSM
Higgs sector in the limit where all the Higgs particles,
except ho, are very heavy, namely, when mAo � mZ .
We want to demonstrate the decoupling of the MSSM
Higgs particles á la Appelquist Carazzone [32], meaning
that the required proof should show that the decoupling
theorem also applies for this particular case. This is the
third work belonging to a program that we initiated in
[33,34] which aims to demonstrate the decoupling of SUSY
particles beyond tree level in each of the MSSM sectors. In
generic words, and by following the Appelquist-Carazzone
approach, the proof of decoupling of SUSY particles at
low energies amounts to first compute the effective ac-
tion Γeff [φ] for the SM particles φ (φ = q, l, ν, Z,W±, γ, g,
HSM ) that is generated through functional integration
of all the non-standard particles of the MSSM φ̃ (φ̃ =
q̃, l̃, ν̃, χ̃±, χ̃o, g̃, H±, Ho, Ao)

eiΓeff [φ] =
∫
[dφ̃] eiΓMSSM[φ,φ̃] , (1)

with

ΓMSSM[φ, φ̃] ≡
∫

dxLMSSM(φ, φ̃) ; dx ≡ d4x , (2)

and LMSSM is the MSSM Lagrangian.
Secondly, one must perform a large SUSY mass expan-

sion of Γeff [φ] to be valid for low energies, sayMEW � Mφ̃,
and, as a result, one should get finally the following be-
haviour,

Γeff [φ] = Γ̂SM[φ] +O
[(

MEW

Mφ̃

)n]
, (3)

which means that all the effects of the heavy SUSY par-
ticles φ̃ can be absorbed into redefinitions of the SM cou-
plings and wave functions of the SM fields φ, or else they
are suppressed by inverse powers of the heavy masses Mφ̃

and therefore vanish in the asymptotic limitMφ̃ → ∞. We
believe that only an explicit computation as the one just
outlined can be considered as a formal and general proof of
decoupling of non-standard particles from the low energy
SM physics.

We have started this program with the computation of
the part of the effective action for the electroweak gauge
bosons, but, of course, a complete proof of decoupling will
require to obtain the total effective action for the other
SM particles as well, namely, the fermions, the gluon and
the SM Higgs particle itself. In particular, the study of the
h0bb̄ vertex is one of the most interesting observables in the
Higgs phenomenology [35]. The reason to start with the
electroweak gauge boson sector is, first, for simplicity and,
second, because we were interested in studing the implica-
tions for some of the precision observables at LEP with ex-
ternal gauge bosons as the S, T and U or related parame-
ters. We have proved that, to one loop level, the functional
integration of the various MSSM sparticle sectors factorize
in the effective action for electroweak bosons and, there-
fore, this integration can be performed sector by sector
separately. In [33,34] we have completed the integration of
squarks, sleptons, charginos and neutralinos in the MSSM
to one loop, and have demonstrated their decoupling in the
large SUSY masses limit. Since the asymptotic behaviour
of the Feynman loop integrals appearing in the compu-
tation depend on the relative sizes of the various sparti-
cle masses in the loop propagators, one must perform the
computation by assuming a particular hypothesis for these
masses. We assumed in [33,34] that the large SUSY masses
limit is taken for each sector such that M2

EW � M2
φ̃i

∀i,
but with |M2

φ̃i
−M2

φ̃j
| � |M2

φ̃i
+M2

φ̃j
| if i = j. That is, all

the SUSY masses are large as compared to the electroweak
scale but they are close to each other. This is a plausible
hypothesis in the MSSM but is not the most general one
for all the sectors. In particular for the squarks of the third
generation where, even assuming a common soft-SUSY-
breaking mass, one has (m̃2

t1 − m̃2
t2) � mt(At − µ cotβ)

and (m̃2
b1

− m̃2
b2
) � mb(Ab − µ tanβ) and, therefore, for

large enough values of At, Ab, µ and/or tanβ the previ-
ous hypothesis may not hold. In consequence, for these
particular cases where |M2

φ̃i
− M2

φ̃j
| � O|M2

φ̃i
+M2

φ̃j
| for

i = j an independent demonstration of decoupling should
be done.
In the present work we complete the computation of

the effective action for electroweak gauge bosons to one
loop by integrating out the heavy MSSM Higgs parti-
cles, namely the charged H±, the pseudoscalar Ao and the
heaviest CP-even Higgs boson Ho. We then perform the
large mass expansion which in the Higgs sector case corre-
sponds to work in the above mentioned decoupling limit.
Notice that for the Higgs sector the previous assump-
tion for the relative Higgs mass values, |m2

Hi
− m2

Hj
| �

|m2
Hi
+m2

Hj
| if i = j holds trivially, since whenmAo � mZ

the four heavy Higgs bosons, H±, Ao and Ho tend to be
degenerate with a mass close to mAo .
The paper is organized as follows. In the second section

we define the effective action for the electroweak gauge
bosons and summarize the relevant part of the MSSM la-
grangian for the purpose of integration of the MSSM Higgs
sector to one loop level. The exact results to one loop of
the contributions to the effective action from the 2, 3, and
4 point electroweak gauge bosons functions are presented



A. Dobado et al.: The Higgs sector of the MSSM in the decoupling limit 489

in Sect. 3. We also analyze in that section the behaviour of
these functions in the decoupling limit, mAo � mZ , and
present the corresponding asymptotic results in terms of
the large Higgs massesmH± ,mAo ,mHo . In Sect. 4 the pre-
vious asymptotic expressions are rewritten in a form that
will allow us to conclude on the decoupling of the Higgs
sector á la Appelquist Carazzone as announced. In particu-
lar, by using the common language of renormalization, the
required redefinitions of the SM couplings and wave func-
tions for the electroweak bosons are presented in the form
of specific contributions to the SM counterterms. Section 5
is devoted to a comparison with the paradigmatic and dra-
matically different case of the SM with a very heavy Higgs
particle, MEW � MHSM

, which is well known not to de-
couple from low energy electroweak physics [36–43]. We
find illustrative to perform this comparison in the lan-
guage of the effective action. This non-decoupling of the
SM Higgs particle has been shown to manifest at one loop
level in several observables, as for instance ∆ρ [38,39,44],
and it is being very relevant in the indirect Higgs searches
at the present colliders. In Sect. 5 we reobtain this non-
decoupling behavior by computing the effective action for
electroweak gauge bosons after integration to one loop of
the SM Higgs particle and by studying its largeMHSM

ex-
pansion. We will see that the non-decoupling of the Higgs
particle manifests in this context as a violation of the de-
coupling theorem in the four point electroweak gauge func-
tions. Finally, the conclusions of this work are summarized
in Sect. 6.

2 Integration of the MSSM Higgs sector
to one loop

The effective action for the electroweak gauge bosons,
Γeff [V ] (V = A,Z,W±) gets contributions to one loop
from all the MSSM sectors, except from gluinos which will
start contributing at and beyond two loops. This effective
action is defined through functional integration of all the
sfermions f̃ (q̃, l̃, ν̃), neutralinos χ̃o (χ̃o1...4), charginos χ̃

±
(χ̃±

1,2), and the Higgs bosons H (H±, Ho, Ao) by:

eiΓeff [V ] =
∫ [

df̃
] [

df̃∗
] [

dχ̃+] [d¯̃χ+
]
[dχ̃o] [dH]

×eiΓMSSM[V ,f̃ ,χ̃+,χ̃o,H] , (4)

where the relevant part of the MSSM classical action can
be written as,

ΓMSSM[V, f̃ , χ̃+, χ̃o, H]

≡
∫

dxLMSSM(V, f̃ , χ̃+, χ̃o, H)

=
∫

dxL(0)(V ) +
∫

dxLf̃ (V, f̃) +
∫

dxLχ̃(V, χ̃)

+
∫

dxLH(V,H)

≡ Γ0[V ] + Γf̃ [V, f̃ ] + Γχ̃[V, χ̃] + ΓH [V,H] . (5)

Here, L(0)(V ) is the free gauge boson lagrangian at tree
level, and Lf̃ , Lχ̃ and LH are the lagrangians of sfermions,
inos (i.e. charginos and neutralinos) and Higgs bosons re-
spectively. By looking into the particular form of these
lagrangians it is inmediate to see that the integration of
the various sectors at the one-loop level can be factorized
out, and their contributions to the effective action can be
computed separately sector by sector.
In [33,34] we have performed the complete integration

to one loop of the sfermions and inos sectors. Here we
present the corresponding integration of the heavy Higgs
sector defined as,

eiΓ
H
eff [V ] =

∫
[dH]ei

∫
dx(L(0)(V )+LH(V,H)) , (6)

where we have introduced a short hand notation for the
heavy Higgs particles,

H =



H1

H2

Ho

Ao


 , (7)

with H1 and H2 being related to the physical charged
Higgs particles by H± ≡ 1√

2

(
H1 ± iH2

)
, and LH(V,H)

is the relevant MSSM Higgs sector lagrangian that is given
by,

LH(V,H) = L(0)(H) + LHV V + LHHV + LHHV V . (8)

Here L(0)(H) is the free lagrangian for the heavy Higgs
particles,

L(0)(H) =
1
2
(
∂µH

T∂µH − HTM2
HH

)
, (9)

the squared mass matrix is given in terms of the physical
Higgs boson masses by

M2
H ≡ diag(m2

H+ ,m2
H+ ,m2

Ho ,m2
Ao) , mH+ = mH− .

(10)
and we have used the superscript T to denote the trans-
pose matrix. The interaction lagrangian pieces can be
written as follows [45],

LHV V = BTH ,

LHHV = HT∨(1)µ
↔
∂µ H ,

LHHV V = HT ∨(2) H . (11)

where

B ≡




0
0

gcαβ

(
mWW+

µ Wµ− + mZ

2cW
ZµZ

µ
)

0


 , (12)
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and ∨(1)µ, ∨(2) are the 4 × 4 Higgs interaction matrices
with one and two gauge bosons respectively defined by,

∨(1)µ




[V (1)µ]ij = 0 if i = j ,

[V (1)µ]ij = −[V (1)µ]ji if i = j ,

[V (1)µ]12 = eAµ + gc2W

2cW
Zµ ,

[V (1)µ]13 = g
2 sαβ W

µ
2 , [V (1)µ]14 =

g

2
Wµ

1

[V (1)µ]23 = − g
2 sαβ W

µ
1 ,

[V (1)µ]24 = g
2W

µ
2 , [V (1)µ]34 = − g

2cW
sαβZ

µ

∨(2)




[V (2)]ij = [V (2)]ji ∀ i, j , [V (2)]12 = [V (2)]34 = 0 ,
[V (2)]11 = [V

(2)]22
= 2

[
g2

4 W+
µ Wµ− + g2 c22W

8c2W
ZµZ

µ

+ e2

2 AµA
µ + eg c2W

2cW
AµZ

µ
]
,

[V (2)]33 = [V (2)]44
= 2

[
g2

4 W+
µ Wµ− + g2

8c2W
ZµZ

µ
]
,

[V (2)]i3 = sβα
[− eg

2 AµW
i µ

+ g2 s2W
2cW

ZµW
i µ
]
, i = 1, 2 ,

[V (2)]i4 =
[
− eg

2 AµW
i µ + g2 s2W

2cW
ZµW

i µ
]
,

i = 1, 2 .
(13)

Here, as usual, g and e are the electroweak and electromag-
netic couplings respectively, and we have used a shorthand
notation for the sines and cosines of the weak angle θW
and the β angle (tanβ ≡ v2

v1
)) given by

sαβ ≡ sin(α − β) , cαβ ≡ cos(α − β) ,
c2W ≡ cos 2θW , s2W ≡ sin 2θW ,

cW ≡ cos θW , sW ≡ sin θW . (14)

Correspondingly, we can define the various contributions
to the classical action by,

ΓH [V,H] = 〈BT H〉+ 1
2

〈HT AH H 〉 , (15)

where,

AH ≡ A
(0)
H +A

(1)
H +A

(2)
H ,

〈BTH〉 ≡
∫
dk̃ BT

k Hk ,

〈HT AH H 〉 ≡
∫
dk̃ dp̃ HT

k A
(i)
HkpHp , i = 0, 1, 2 .(16)

with,

dk̃ ≡ d4k

(2π)4
, (17)

and we have chosen the representation in momentum
space which is more convenient for functional integration,

A
(0)
Hkp ≡ (2π)4 δ(k + p) (k2 − M2

H) ,

A
(1)
Hkp ≡ i (2π)4

∫
dq̃ δ(k + p+ q) (k − p)µ

[
∨(1)µ

]
q
,

A
(2)
Hkp ≡ (2π)4

∫
dq̃ dr̃ δ(k + p+ q + r)

[
∨(2)

]
q,r

,

BT
k ≡ (2π)4

∫
dq̃ dp̃ δ(k + p+ q)BT

q,p . (18)

Once the classical action has been written in the proper
form (15), we proceed with the functional integration to
one loop of the heavy Higgs particlesH. By using the stan-
dard path integral techniques we get the following result
for the effective action,

ΓH
eff [V ] = Γ0[V ] +

i

2
Tr logAH − 1

2
〈BT A−1

H B〉 , (19)

where,

〈BT A−1
H B〉 ≡

∫
dk̃ dp̃BT

k A−1
Hkp Bp .

In (19) we have introduced the functional trace which for
a generic matrix operator Cij(k, p) ≡ Cij

kp is defined by
[33]:

TrC ≡
∑
i

∫
dk̃Cii

kk .

Next, by expanding the logarithm and the inverse operator
in (19), the effective action can be written as,

ΓH
eff [V ]

= Γ0[V ] +
i

2

∞∑
k=1

(−1)k+1

k
Tr
[
GH

(
A

(1)
H +A

(2)
H

)]k

−1
2

∞∑
k=0

(−1)k
〈

BT
[
GH

(
A

(1)
H +A

(2)
H

)]k
GH B

〉
, (20)

where GH is the heavy Higgs propagator matrix, defined

as GH =
(
A

(0)
H

)−1
, and is given in momentum space by,

GHkp = (2π)4δ(k + p)
(
k2 − M2

H

)−1
, (21)

with (
q2 − M2

H

)−1
= diag

(
1

q2 − m2
H1

,
1

q2 − m2
H2

,

1
q2 − m2

Ho

,
1

q2 − m2
Ao

)
.

Finally, if we keep just the terms that contribute to
the two, three and four point V Green functions we get,

ΓH
eff [V ] = Γ0[V ]− 1

2
〈BTGHB〉

+
i

2
Tr
(
GHA

(2)
H

)
− i

4
Tr
(
GHA

(1)
H

)2

− i

2
Tr
(
GHA

(1)
H GHA

(2)
H

)
+

i

6
Tr
(
GHA

(1)
H

)3

− i

4
Tr
(
GHA

(2)
H

)2

+
i

2
Tr
(
GHA

(1)
H GHA

(1)
H GHA

(2)
H

)
− i

8
Tr
(
GHA

(1)
H

)4
+O(V 5) . (22)
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H
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H

H
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H
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V3

H

H

H

H

Fig. 1. Generic Feynman diagrams corresponding to the tree-
level and one-loop contributions to the two-, three- and four-
point functions of electroweak gauge bosons

The various contributions can be clearly identified from
this expression. The third and fourth terms give the one-
loop contributions to the two-point functions; the two
next terms to the three-point functions; and the last three
terms correspond to the four-point functions. Notice that
there is just one contribution from the Higgs integration
at the tree level. This is the second term in (22) and con-
tributes just to the four point functions. Note that it is the
unique sector that generates a contribution to the elec-
troweak gauge boson functions at the tree level. As we
have seen in [33,34] the integration of sfermions and inos
in the effective action for electroweak gauge bosons give
only contributions starting from one-loop level. In addi-
tion, notice also that the resulting effective action in (22)
is gauge independent, as expected. This is due to the fact
that we only integrate the physical Higgs particles whose
interactions with the electroweak gauge bosons are gauge
independent.
Finally, and for the purpose of illustration, we have

shown in Fig. 1 the Feynman diagrams corresponding to
the different terms appearing in the above (22).

3 The n-point functions
of electroweak gauge bosons

The effective action can be written in terms of the n-point
Green’s functions in momentum space, generically as:

Γeff [V ] =
∑
n

1
CV1V2...Vn

∫
dk̃1 . . .dk̃n(2π)4δ(Σn

i=1ki)

×ΓV1V2...Vn
µ ν... ρ (k1 k2 . . . kn)V

µ
1 (−k1)V ν

2 (−k2)

. . . V ρ
n (−kn) , (23)

where CV1V2...Vn are the proper combinatorial factors ac-
counting for the identical external field, and we have as-
sumed the convention of incoming momenta ki for the
external gauge bosons.
In this section we present the exact results to one-

loop for the various contributions to the effective action
of (22) coming from the 2, 3 and 4 point functions and
write them in terms of the standard one-loop integrals of
’t Hooft, Veltman and Passarino [46,47]. We latter ana-
lyze the asymptotic behaviour of the electroweak bosons
Green’s functions in the limit of large Higgs masses. The
analysis of the one-loop integrals in the large masses limit
have been done by means of the m-Theorem [48].
After working out the functional traces in (22) and by

computing the corresponding Feynman integrals in dimen-
sional regularization we get the following contributions,
ΓH
eff [V ][n], from the n = 2, 3 and 4 point functions re-
spectively2,

ΓH
eff [V ][2]

= −π2
∫
dp̃dk̃ δ(p+ k)

{∑
i

[
∨(2)

]ii
p,k

A0(mi)

+
1
4

∑
i �=j

[
∨(1)µ

]ij
p

[
∨(1)ν

]ji
k
Ii jµν(k,mi,mj)

}
, (24)

ΓH
eff [V ][3]

= −iπ2
∫
dp̃dk̃ dr̃ δ(p+ k + r)

×
{∑

i �=j

[
∨(1)µ

]ji
p

[
∨(2)

]ij
k,r

1
2
T j i
µ (p,mi,mj)

+
1
6

∑
i �=j �=k

[
∨(1)µ

]ij
−p

[
∨(1)ν

]jk
−k

[
∨(1)σ

]ki
−r

×T i j k
µ ν σ(p, k,mi,mj ,mk)

}
, (25)

ΓH
eff [V ][4]

= −1
2

∑
i

∫
dp̃Bi

p

1
p2 − m2

i

Bi
−p

+π2
∫
dp̃dk̃ dr̃ δ(p+ k + r)

{∑
i,j

[
∨(2)µ

]ij
−p,−k

×
[
∨(2)

]ji
−r,−t

J i jp+k(p+ k,mi,mj)

+
∑
i,j,k

[
∨(1)µ

]ij
−p

[
∨(1)ν

]jk
−k

[
∨(2)σ

]ki
−r,−t

×J i j kµ ν (p, k,mi,mi,mk)

+
1
8

∑
i,j,k,l

[
∨(1)µ

]ij
−p

[
∨(1)ν

]jk
−k

[
∨(1)σ

]kl
−r

[
∨(1)λ

]li
−t

2 Notice that in dimensional reduction the results would be
the same, since we are not integrating out gauge bosons. This
also applies to the results of our two previous papers [33,34]
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×J i j k lµ ν σ λ(p, k, r,mi,mj ,mk,ml)

}
, (26)

In the above expressions the indices i, j, k, l run from 1 to
4 and correspond to the four entries in the heavy Higgs
matrix H of (7). In these formulas and in the follow-
ing, a proper symmetrization over the indices and mo-
menta of the external identical fields, although not ex-
plicitely shown, must be assumed. The one loop integrals
T j i
µ , T

i j k
µ ν σ, J

i j
p+k, J

i j k
µ ν and J i j k lµ ν σ λ are defined in terms

of the standard integrals, A0, B0, µ, µν , C0, µ, µν, µνσ and
D0, µν, µνσ, µνσλ [46,47] in appendix A of our previous work
[34]. Similarly, the two-point integral Ii jµν is defined by,

Ii jµν(k,mi,mj) (27)

= (4Bµν + 2kνBµ + 2kµBν + kµkνB0) (k,mi,mj).

We refer the reader to [34] for these and more details on
the Feynman integrals.
Finally, from the previous expressions in (24) and by

using the definition in (23) we extract, after a rather te-
dious computation, the exact results to one loop for the
two-point, ΓV1V2

µν , three-point, ΓV1V2V3
µνσ , and four-point,

ΓV1V2V3V4
µνσλ , Green’s functions with all the possible choices
for the external legs, Vi = A,Z,W± which are collected
in appendix A. We would like to mention that we have
performed all the one-loop computations of this paper by
the standard diagrammatic method as well and we have
got the same results.
In the following, and in order to get the n-point Green’s

functions in the decoupling limit, we use the asymptotic
results for the standard one-loop integrals A0(mi),
B0, µ, µν(p,mi,mj), C0, µ, µν, µνσ(p, k,mi,mj ,mk) and
D0, µ,µν, µνσ, µνσλ(p, k, r,mi,mj ,mk,ml) that we have
computed in dimensional regularization and by using the
m-Theorem [48], and were presented in (A.12) of [34].
These expressions are valid if the masses mi, j, k, l in the
propagators of the integrals are much larger that the exter-
nal momenta p, k, r and if the differences of the squared
masses involved in the same integral are much smaller
than their sums. This last condition is fulfilled in the
present case of the heavy MSSM Higgs sector, even after
radiative corrections are included in the Higgs mass pre-
dictions. In order to illustrate this point we shortly present
in the following the approximate MSSM Higgs mass values
in the decoupling limit that include the leading radiative
corrections. But the conclusions hold even when the full
radiative corrections are employed. To be more precise, in
the MSSM, using mAo and tanβ as input parameters, and
including the leading radiative corrections which can be
parametrized in terms of the quantity,

δ ≡ 3GF√
2π2

m4
t

sin2 β
log

(
1 +

M2
Q̃

m2
t

)
,

the Higgs masses approach the following values, in the
decoupling limit, mAo � mZ [9],

mho −→
√
m2

Z cos2 2β + δ sin2 β

×
[
1 +

δ m2
Z cos

2 β

2m2
Ao (m2

Z cos2 2β + δ sin2 β)

−m2
Z sin

2 2β + δ cos2 β
2m2

Ao

]
,

mHo −→ mAo

[
1 +

m2
Z sin

2 2β + δ cos2 β
2m2

Ao

]
,

mH± −→ mAo

[
1 +

m2
W

m2
Ao

]1/2
, (28)

and the mixing angle in the Higgs sector, α, approaches
to,

α → β − π

2
⇒ sαβ → −1 .

We see, from the previous expressions that indeed, in the
decoupling limit, mho always stays below a maximum
value which can grow up to about 130GeV depending on
the particular value of tanβ and the common squark mass
MQ̃

3. The other Higgs bosons, Ho, H± and Ao become
very heavy and approximately degenerate in the decou-
pling limit, where mHo ∼ mH± ∼ mAo � mZ . There-
fore the condition that the squared mass differences for
the heavy Higgs sector of the MSSM are always smaller
than their sums is largely justified in the decoupling limit
both to tree level and in the one loop approximation. No-
tice however that in the present computation of the elec-
troweak Green’s functions to one loop level, we use the
tree level Higgs masses in the internal propagators. The
use of the radiatively corrected Higgs masses would be
effectively a two loop effect.
Finally, by considering sαβ → −1 and inserting the

asymptotic expressions of the one loop integrals into (24)
and, after some algebra, we get the Green functions in the
decoupling limit that are collected in appendix A. These
asymptotic results can be summarized by the following
generic expressions [34],

ΓV1 V2...Vn
µ ν...ρ = ΓV1 V2...Vn

0µ ν...ρ +∆ΓV1 V2...Vn
µ ν...ρ (29)

where the subscript 0 refers to the tree level functions, and
the one-loop contributions to the two, three and four-point
functions behave, in the decoupling limit, respectively as
follows,

∆ΓV1 V2
µ ν =

[
ΣV1 V2

(0) +ΣV1 V2
(1) k2

]
gµ ν +RV1 V2

(0) kµkν

+O
(

k2

Σm2 ,
∆m2

Σm2

)

∆ΓV1 V2 V3
µ ν σ = FV1 V2 V3Lµ ν σ +O

(
k2

Σm2 ,
∆m2

Σm2

)
∆ΓV1 V2 V3 V4

µ ν σ λ = GV1 V2 V3 V4βµ ν σ λ

+O
(

k2

Σm2 ,
∆m2

Σm2

)
(30)

3 Similar conclusions are found if the more general hypothe-
sis of non-common squark mass parameter is assumed
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where,

ΣV1 V2
(0) → 0 , RV1 V2

(0) = −ΣV1 V2
(1) , O

(
k2

Σm2 ,
∆m2

Σm2

)
→ 0,

(31)
k denotes generically any of the external momenta and
Σm2 and ∆m2 refer generically to sums and differences
of Higgs squared masses respectively. The relevant con-
tent are in the functions ΣV1 V2

(1) , FV1 V2 V3 and GV1 V2 V3 V4

which contain a ∆ε proportional term, with ∆ε being de-
fined in (A.1), and a finite contribution that is a loga-
rithmic function of the heavy Higgs masses, mH0 , mH+

and mA0 . These functions are precisely the only rem-
nant of the heavy Higgs particles and, therefore, a priori,
they summarize all the potential non-decoupling effects of
these particles in the low energy electroweak gauge bosons
physics. In the next section we will show, however, that
these apparent non-decoupling effects are, indeed, non-
physical since they do not manifest in the electroweak ob-
servables.

4 Decoupling of the MSSM Higgs particles
á la Appelquist Carazzone

In the previous section we have presented the asymp-
totic results of the electroweak gauge boson functions com-
ing from the integration at one loop of the heavy MSSM
Higgs particles. We have shown that all the potential non-
decoupling effects of these heavy Higgs particles manifest
as divergent contributions in D = 4 and some finite con-
tributions logarithmically dependent on the heavy Higgs
masses. Furthermore, as can be seen in (30), these contri-
butions are both proportional to the tree level functions,
so that we expect them to be finally absorbed by some
proper redefinition of the low energy SM parameters.
In this section we are going to complete the demon-

stration of decoupling of the MSSM Higgs particles á la
Appelquist Carazzone by finding a particular set of coun-
terterms for the SM electroweak parameters which pre-
cisely allow to absorb all the mentioned effects. We will
also show that these explicit counterterms coincide with
the expressions of the corresponding on-shell SM coun-
terterms in the decoupling limit. By using the common
language in the renormalization context, it is equivalent
to say that the decoupling at the Green functions (or ef-
fective action) level manifests if (and only if) the on-shell
prescription for the counterterms is fixed. Of course, once
the decoupling is shown at the electroweak gauge boson
functions level, the decoupling in the observables with ex-
ternal electroweak gauge bosons is automatically ensured,
and this latter is obviously independent of the renormal-
ization prescription.
Let us start by stating the condition for decoupling in

terms of the renormalized electroweak gauge boson func-
tions. As usual, these functions are obtained as follows,

Γ V1V2...Vn

Rµν... ρ (ci R) = Γ V1V2...Vn
0µ ν... ρ (ci R) +∆Γ V1V2...Vn

µ ν... ρ (ci R)

+δΓ V1V2...Vn
µ ν... ρ (ci R) , (32)

where, once more, Γ0 denote the tree level contributions,
∆Γ are the one-loop contributions, and δΓ represent the
contributions from the counterterms of the SM parameters
and wave functions. All these contributions must be writ-
ten in terms of the renormalized parameters that we have
denoted here generically by ci R. Now, the decoupling of
heavy particles á la Appelquist Carazzone is equivalent to
the statement that the renormalized Green functions are
equal to the corresponding tree level functions, evaluated
at the renormalized parameters, plus corrections that go
as inverse powers of the heavy masses and vanish in the
asymptotic limit. Therefore, it implies the following con-
ditions,

∆Γ V1V2...Vn
µ ν... ρ (ci R) + δΓ V1V2...Vn

µ ν... ρ (ci R) ≈ 0 ; k2 � m2
i ,∀i ,
(33)

where, for the present case,mi are the heavy Higgs masses,
k any of the external momenta, and, by≈ 0 we mean quan-
tities vanishing in the decoupling limit which have been
written generically along this paper as being of
O
(

k2

Σm2 ,
∆m2

Σm2

)
.

In order to find the wanted explicit SM counterterms
we need to include in (33) the asymptotic results presented
in the previous section for ∆Γ , write δΓ in terms of the
SM counterterms and finally solve the complete system of
equations with all the two, three and four point functions
included.
By using the standard multiplicative renormalization

procedure [44,49], the bare SM electroweak fields and pa-
rameters, denoted here by a superscript 0, and the renor-
malized ones are related by,

W0
µ ≡ Z

1/2
W Wµ , B0

µ ≡ Z
1/2
B Bµ , Φ

0 = (ZΦ)
1
2Φ,

ξ0
W ≡ ξW (1 + δξW ) , ξ0

B ≡ ξB(1 + δξB),

g0 ≡ Z
−1/2
W (g − δg) , g′0 ≡ Z

−1/2
B (g′ − δg′) ,

v0 = (ZΦ)
1
2 (v − δv) , Zi ≡ 1 + δZi , i ≡A,Z,W,B,Φ . (34)

The counterterms for the physical masses and physical
fields are related to the previous ones by,

δm2
W = m2

W

(
δZΦ − 2δg

g
− 2δv

v
− δZW

)

δm2
Z = m2

Z

(
δZΦ − 2c2W

δg

g
− 2s2

W

δg′

g′ − 2δv
v

− δZZ

)
δZA = s2

W δZW + c2W δZB

δZZ = c2W δZW + s2
W δZB , (35)

where, as usual, s2
W = 1− m2

W /m2
Z and e = gsW .

The contributions from the various renormalization
constants to the two, three and four point functions can
be written as [44],

δΓAA
µν =

[− (s2
W δZW + c2W δZB

)
k2] gµν

+
[
s2

W

(
δξW
ξW

+
(
1− 1

ξW

)
δZW

)

+c2W

(
δξB
ξB

+
(
1− 1

ξB

)
δZB

)]
kµ kν ,
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δΓAZ
µν =

[
sW

cW

m2
W

(
δg′

g′ − δg

g

)

−sW cW ( δZW − δZB ) k2

]
gµν

+sW cW

[
δξW
ξW

+
(
1− 1

ξW

)
δZW

−δξB
ξB

−
(
1− 1

ξB

)
δZB

]
kµ kν ,

δΓZZ
µν =

[
δm2

Z +
(
m2

Z − k2)
× (c2W δZW + s2

W δZB

)]
gµν

+
[
c2W

(
δξW
ξW

+
(
1− 1

ξW

)
δZW

)

+s2
W

(
δξB
ξB

+
(
1− 1

ξB

)
δZB

)]
kµkν ,

δΓWW
µν =

[
δm2

W +
(
m2

W − k2) δZW

]
gµν

+
[
δξW
ξW

+
(
1− 1

ξW

)
δZW

]
kµ kν ,

δΓAW+W−
µνσ = g sW MLµ ν σ

[
δZW − δg

g

]
,

δΓZW+W−
µνσ = g cW MLµ ν σ

[
δZW − δg

g

]
,

δΓAAW+W−
µ ν σ λ = −g2 s2

W ßµνσλ

[
δZW − 2 δg

g

]
,

δΓAZW+W−
µ ν σ λ = −g2 sW cW ßµνσλ

[
δZW − 2 δg

g

]
,

δΓZZW+W−
µ ν σ λ = −g2 c2W ßµνσλ

[
δZW − 2 δg

g

]
,

δΓW+W−W+W−
µ ν σ λ = g2 ßµσνλ

[
δZW − 2 δg

g

]
. (36)

The results for the one-loop contributions to the elec-
troweak gauge boson functions, presented in the previous
section and in appendix A, can be rewritten in a more
simplified form and in terms of just the heavy mA0 mass
as follows,

∆ΓAA
µν = − e2

8π2 Kµ ν ΨH ,

∆ΓAZ
µν =

eg

16π2

(2s2
W − 1)
cW

Kµ νΨH ,

∆ΓW W
µν = − g2

16π2 Kµ νΨH ,

∆ΓZ Z
µν = − g2

16π2

(2s2
W − 1)2 + 1
2c2W

Kµ νΨH ,

∆ΓAW+W−
µ ν σ =

eg2

16π2 MLµ ν σ ΨH ,

∆ΓZW+W−
µ ν σ =

g3

16π2 cW MLµ ν σ ΨH ,

∆ΓAAW+W−
µ ν σ λ = − e2g2

16π2 ßµνσλ ΨH ,

∆ΓAZW+W−
µ ν σ λ = − eg3

16π2 cW ßµνσλ ΨH ,

∆ΓZZW+W−
µ ν σ λ = − g4

16π2 c2W ßµνσλ ΨH ,

∆ΓW+W−W+W−
µ ν σ λ =

g4

16π2 ßµσνλ ΨH (37)

where,

ΨH ≡ 1
6

(
∆ε − log m

2
A0

µ2
o

)
,

Kµ ν ≡ k2gµ ν − kµkν (38)

By plugging the previous results of (35) through (38) into
(33) and by solving the system we finally find the following
solution for the SM counterterms4:

δZA = − e2

8π2ΨH

δm2
W = −m2

W δZW =
g2

16π2m
2
WΨH

δm2
Z = −m2

Z δZZ =
g2

16π2

m2
Z

c2W
(1− 2s2

W + 2s4
W )ΨH , (39)

and,

δξW = δZW , δξB = δZB ,

δg′

g′ ≈ 0 ,
δg

g
≈ 0 . (40)

Notice that, as in our previous formulas, the results for all
the counterterms above have corrections, not explicitely
shown, that vanish in the asymptotic limit of infinitely
heavy mA0 .
To finish this section we find interesting to compare

the previous results for the SM counterterms with the
corresponding counterterms of the on-shell renormaliza-
tion prescription which are defined, as usual, by [51]:

δm2
W = −ReΣWW

T (m2
W ) ,

δZW = Re
∂ΣWW

T (k2)
∂k2 |k2=m2

W

δm2
Z = −ReΣZZ

T (m2
Z) ,

δZZ = Re
∂ΣZZ

T (k2)
∂k2 |k2=m2

Z

δZA = Re
∂ΣAA

T (k2)
∂k2 |k2=0 ,

δg

g
=

1
cW sW

ΣAZ
T (0)
mZ

(41)

plus the solution for δg′ that is a consequence of the U(1)Y
Ward identity,

δg′

g′ = 0, (42)

4 Similar results have been found for sfermions, charginos
and neutralinos in [50]
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Notice that, after plugging our asymptotic expressions for
the ΣV1 V2

T functions of appendix A into (41), the solutions
for the on-shell counterterms coincide with our solutions
of (39) and (40) in the decoupling limit.
In summary, we have shown in this section that the

heavy MSSM Higgs particles decouple from the low energy
electroweak gauge boson physics. We have found as well
that the SM counterterms that are needed to absorb all
the (non-physical) heavy Higgs effects are precisely the
on-shell counterterms, being these consistently evaluated
in the decoupling limit.

5 Comparison with the SM Higgs boson case

We present in this section the paradigmatic case of the SM
heavy Higgs boson and its comparison with the present
case of a MSSM heavy Higgs sector. It is very well known
that the SM Higgs particle does not decouple from the low
energy electroweak physics. The logarithmic dependent
terms on the heavy Higgs mass that appear in various elec-
troweak precision observables to one-loop, as for instance,
∆ρ, ∆r.., are clear remnants of the non-decoupling SM
Higgs effects. Indeed, it is precisely this non-decoupling
phenomenon that is after all being responsible for the
present upper Higgs mass limit, mH < 230GeV at 95%
CL, which is imposed by the present data not allowing
easily to accommodate a heavy Higgs.
We present in the following the results of integrating

out the heavy SM Higgs particle at the one-loop level for
the electroweak gauge boson part of the SM effective ac-
tion. The corresponding results for the so-called effective
Electroweak Chiral Lagrangian and the chiral parameters
were found some years ago in [40,41,?,42,52]. We will work
here instead in the different context of the effective SM ac-
tion and the Appelquist Carazzone Theorem that we have
chosen in this paper.
By integrating out the physical Higgs boson particle at

the one-loop level in the SM, and by following the same
procedure as outlined in the previous sections, we have
found the following asymptotic results for the two, three
and four-point electroweak gauge functions, to be valid in
the very large Higgs mass limit, MHSM

� MZ , k,

∆ΓAA
µν ≈ 0 , ∆ΓAZ

µν ≈ 0

∆ΓZZ
µν =

g2

16π2

1
2 c2W

M2
HSM

×
(
∆ε − log M

2
HSM

µ2
o

+ 1
)

gµν ,

∆ΓWW
µν =

g2

16π2

1
2
M2

HSM

(
∆ε − log M

2
HSM

µ2
o

+ 1
)

gµν ,

∆ΓAWW
µν σ ≈ 0 , ∆ΓZWW

µν σ ≈ 0

∆ΓAAWW
µν σ λ ≈ 0 , ∆ΓAZWW

µν σ λ ≈ 0

∆ΓZZWW
µν σ λ =

g4

16π2

1
2 c2W

(
∆ε − log M

2
HSM

µ2
o

)
gµν gσλ ,

∆ΓWWWW
µν σ λ =

g4

16π2

1
2

(
∆ε − log M

2
HSM

µ2
o

)
× (gµν gσλ + gµλ gνσ) ,

∆ΓZZZZ
µνσλ =

g4

16π2

1
2 c4W

(
∆ε − log M

2
HSM

µ2
o

)
× (gµν gσλ + gµλ gνσ + gµσ gνλ) , (43)

where ≈ 0 here means quantities that go with inverse pow-
ers of the SM Higgs mass and vanish in the asymptotic
limit.
Next, it is inmediate to find out the corresponding SM

counterterms given by,

δm2
W

m2
W

=
δm2

Z

m2
Z

= − g2

16π2

1
2
M2

HSM

m2
W

(
∆ε − log M

2
HSM

µ2
o

+ 1
)

,

δg

g
≈ 0 ,

δg′

g′ ≈ 0 ,

δZW = δξW ≈ 0 , δZB = δξB ≈ 0 . (44)

By comparing (44) and (39), (40) we already see some
differences. While in the MSSM all the Higgs mass de-
pendence, in the decoupling limit, is logarithmic, in the
SM case the dominant contribution to the two point func-
tions goes with the square of the Higgs mass. Another
relevant difference is in the four point functions. The re-
sults in (44) show that the one-loop corrections from the
SM Higgs integration are not proportional to the tree level
tensor, ßµνσλ, and, as a consequence, these can not be ab-
sorbed by the SM counterterms. This is a clear indication
of the non-decoupling of the Higgs particle.
Finally, by substituting the previous results of (43) and

(44) into (32) , we see that the resulting renormalized SM
Green functions at low energies, k � MHSM

, are not all
equal to the tree level ones evaluated at the renormalized
parameters, as in the MSSM case, but there are some extra
terms in the four functions given generically by,

Γ V1V2V3V4
Rµν σ λ (ci R)− Γ V1V2V3V4

0µ ν σ λ (ci R)

= a5

(
g2

2
WµW

µ +
g2

4c2W
ZµZ

µ

)2

, (45)

with,

a5 =
v2

8M2
HSM

+
1

16π2

1
4

(
∆ε − log M

2
HSM

µ2
o

)
. (46)

Notice that the value of this effective parameter does not
coincide with the so-called electroweak chiral parameter a5
computed in [40,41,53]. The reason is because this later
contains the quantum effects of mixed diagrams with both
gauge bosons and the Higgs particle in the loops which are
relevant for the computation of the non-decoupling con-
tributions to observables as for instance ∆ρ. In contrast
the result presented in (46) does not include these mixed
diagrams.
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In summary, the previous (45) shows explicitely that
the decoupling theorem of Appelquist and Carazzone does
not apply in the case of the SM with a very heavy Higgs
particle.

6 Conclusions

We have shown in this work that the heavy Higgs Sec-
tor of the MSSM composed of the H±, H0 and A0 scalar
particles decouple from the electroweak SM gauge boson
physics at the one loop level and under the hypothesis that
the Higgs masses are well above the electroweak gauge bo-
son masses. The demonstration has consisted of the com-
putation of the effective action for the electroweak gauge
bosons that results after the integration to one loop of the
H±, H0 and A0 Higgs bosons. We have found that, in
the limit of very large m0

A as compared to the electroweak
scale, all these one-loop effects can be absorbed into re-
definitions of the SM parameters, more specifically by the
counterterms of (39) and (40).
In this decoupling limit the only remnant to low ener-

gies is, therefore, the light MSSM Higgs particle h0 with a
mass below approximately 130GeV . However, it is still an
open question if all the interactions of this light Higgs par-
ticle with all the SM particles, fermions and gauge bosons,
in the decoupling limit and to all orders in perturbation
theory, are exactly the same as the SM Higgs particle in-
teractions. In our opinion, it is an interesting subject that
is worth to investigate.
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Appendix A

We present here the exact results for the 2, 3 and 4-point
Green functions of the electroweak gauge bosons, and their
asymptotic results in the decoupling limit, mAo � mZ ,
and with all the heavy Higgs masses much larger than
any of the external momenta.
In order to present these results for the corresponding

Green functions, we use the notation introduced in (29).
For brevity, we have omitted the arguments of the one-
loop integrals and we use the following compact notation:

I1 4
µν ≡ I1 4

µν (k,mH1 ,mAo) , I3 2
µν ≡ I3 2

µν (k,mHo ,mH2)

T 14
µ ≡ T 14

µ (p,mH1 ,mAo) , T 31
ν ≡ T 31

ν (k,mHo ,mH1) ,

T 123
µνσ ≡ T 123

µνσ(p, k,mH1 ,mH2 ,mHo) ,

T 231
νσµ ≡ T 231

νσµ(k, r,mH2 ,mHo ,mH1) , etc.

Let us mention that all the asymptotic expressions be-
low have corrections that are suppressed by inverse powers

of the heavy masses, which vanish in the asymptotic large
mass limit. They have been evaluated to one loop in di-
mensional regularization, with:

∆ε =
2
ε

− γε + log(4π) , ε = 4− D , (A.1)

and µo is the scale of dimensional regularization.

Two-point functions

By following the notation given in (29) for the 2-point
Green functions, Γ0

V1V2
µ ν represent the tree level contribu-

tions which are written in a covariant arbitrary gauge Rξ

as,

Γ0
V V
µ ν (k) = (m

2
V − k2)gµ ν +

(
1− 1

ξV

)
kµkν (V = Z,W ) ,

Γ0
AA
µν = −k2gµ ν +

(
1− 1

ξA

)
kµkν ,

Γ0
V1 V2
µ ν = 0 if V1 = V2 , (A.2)

and ∆ΓV1 V2
µ ν are the one-loop contributions defined in

terms of the transverse and longitudinal parts, ΣV1 V2
T and

ΣV1 V2
L , by:

∆ΓV1 V2
µ ν = ΣV1 V2

T (k)
(
gµ ν − kµkν

k2

)

+ΣV1 V2
L (k)

kµkν
k2 . (A.3)

The exact results for the one-loop contributions to the
two-point Green functions of the electroweak gauge bosons
are:

∆ΓAA
µν (k) = − e2

16π2

{
[A0(mH1) +A0(mH2) ] gµν

−1
2
[
I1 2
µν + I2 1

µν

] }
(A.4)

∆ΓZ Z
µν (k) = − g2

16π2

1
4 c2W

{
c22W [A0(mH1) +A0(mH2)] gµν

+[A0(mHo) +A0(mAo)] gµν − 1
2
(2s2

W − 1)2

× [ I1 2
µν + I2 1

µν

]− 1
2
s2
αβ

[
I3 4
µν + I4 3

µν

]}
(A.5)

∆ΓAZ
µν (k) = − e g

16π2

1
2 cW

{
c2W [A0(mH1) +A0(mH2)] gµν

+
1
2
(2s2

W − 1) [ I1 2
µν + I2 1

µν

]}

(A.6)

∆ΓWW
µν (k) = − g2

16π2

1
4

{
[A0(mH1) +A0(mH2)
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+A0(mHo) +A0(mAo)] gµν

−1
4
[
I1 4
µν + I2 4

µν + I4 1
µν + I4 2

µν + s2
αβ

× (I1 3
µν + I2 3

µν + I3 1
µν + I3 2

µν

)]}
, (A.7)

where Ii jµν has been defined in (27) and A0 is the scalar
one-loop integral, which is defined in [46,47].
By using the asymptotic results of the one-loop inte-

grals that were presented in our previous work [33,34], we
obtain the following asymptotic results for the one-loop
heavy Higgs contributions to the transverse and longitu-
dinal parts:

• m2
H± � k2:

ΣAA

T (k)H = − e2

16π2

k2

3

(
∆ε − log m

2
H+

µ2
o

)
, (A.8)

ΣAZ

T (k)H =
e g

16π2

(2s2
W − 1)
2cW

k2

3

×
(
∆ε − log m

2
H+

µ2
o

)
, (A.9)

• m2
H± ,m2

Ho ,m2
Ao � k2 ; |m2

Ho − m2
Ao | � |m2

Ho +m2
Ao |:

ΣZZ

T (k)H =
g2

16π2

1
4 c2W

{
h(m2

Ho ,m2
Ao)

−k2

3

[
(2s2

W − 1)2
(
∆ε − log m

2
H+

µ2
o

)

+
(
∆ε − log m

2
Ho +m2

Ao

µ2
o

)]}
, (A.10)

• m2
H± ,m2

Ho ,m2
Ao � k2 ; |m2

Ho −m2
H± | � |m2

Ho +m2
H± | ;

|m2
Ao − m2

H± | � |m2
Ao +m2

H± |:

ΣW W

T (k)H =
g2

16π2

1
4

{[
h
(
m2

H+ ,m2
Ho

)
+ h

(
m2

H+ ,m2
Ao

)]

−k2

3

[(
∆ε − log m

2
H+ +m2

Ho

2µ2
o

)

+
(
∆ε − log m

2
H+ +m2

Ao

2µ2
o

)]}
, (A.11)

where h(m2
1,m

2
2) is a function defined as:

h(m2
1,m

2
2) ≡ m2

1 log
2m2

1

m2
1 +m2

2
+m2

2 log
2m2

2

m2
1 +m2

2
,

(A.12)
and whose asymptotic behaviour in the large m1 and
m2 limit, with |m2

1 − m2
2| � |m2

1 +m2
2| is:

h(m2
1,m

2
2) → m2

1 − m2
2

2

[
(m2

1 − m2
2)

(m2
1 +m2

2)

+O
(
m2

1 − m2
2

m2
1 +m2

2

)2
]
. (A.13)

The above results can be written, in a generic form, as:
ΣV1 V2

T (k) = ΣV1 V2
T (0) +ΣV1 V2

T (1) k
2, where ΣV1 V2

T (0) and ΣV1 V2
T (1)

are k independent functions. The results for the corre-
sponding longitudinal parts can be summarized in short
by:

ΣV1 V2
L (k) = ΣV1 V2

T (0) ∀V1 V2 .

For example,

ΣW W

L (k)H =
g2

16π2

1
4
{
h
(
m2

H+ ,m2
Ho

)
+h
(
m2

H+ ,m2
Ao

)}
. (A.14)

Three-point functions

Analogously to the previous case, we define the three-point
Green functions by following the notation introduced in
(29), with ingoing momenta assignments V µ

1 (−p), V ν
2 (−k)

and V σ
3 (−r). The tree level contributions, Γ0

V1 V2 V3
µ ν σ , are

given by,

Γ0
AW+W−
µ ν σ = e MLµνσ , Γ0

ZW+W−
µ ν σ = gcW MLµνσ , (A.15)

with:

MLµ ν σ ≡ [(k − p)σgµ ν + (r − k)µgν σ + (p − r)νgµσ] ,
(A.16)

and the AW+W− and ZW+W− exact one-loop contribu-
tions are:

∆ΓAW+W−
µ ν σ H

= −eg2

8
1

16π2

{
s2
αβ

[
(T 13

σ − T 31
σ ) gµν

+(T 31
ν − T 13

ν ) gµσ
]
+
[
(T 14

σ − T 41
σ ) gµν

+(T 41
ν − T 14

ν ) gµσ
]− 1

3
s2
αβ

[
T 231
νσµ − T 231

σνµ + T 321
σµν − T 321

νµσ

+T 123
µνσ − T 123

µσν

]− 1
3
[
T 142
νσµ − T 142

σνµ + T 412
σµν − T 412

νµσ

+T 124
µνσ − T 124

µσν

]}
, (A.17)

∆ΓZW+W−
µ ν σ H

=
g3

8 cW

1
16π2

{
s2
αβs

2
W

[
(T 13

σ − T 31
σ ) gµν

+(T 31
ν − T 13

ν ) gµσ
]
+ s2

W

[
(T 14

σ − T 41
σ ) gµν

+(T 41
ν − T 14

ν ) gµσ
]− 1

6
s2
αβ(2s

2
W − 1) [T 231

νσµ − T 231
σνµ

+T 321
σµν − T 321

νµσ + T 123
µνσ − T 123

µσν

]− 1
6
(2s2

W − 1) [T 142
νσµ

−T 142
σνµ + T 412

σµν − T 412
νµσ + T 124

µνσ − T 124
µσν

]
+
1
6
s2
αβ

× [T 341
µνσ − T 341

µσν + T 431
µνσ − T 431

µσν + T 143
σµν − T 143

νµσ + T 134
σµν

−T 134
νµσ + T 413

νσµ − T 413
σνµ + T 314

νσµ − T 314
σνµ

] }
, (A.18)
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where T ij
µ and T ijk

µνσ are the one-loop integrals as defined
in [34].
By using the asymptotic results of the above men-

tioned integrals, we have obtained the following expres-
sions for the three-point functions in the decoupling limit:

∆ΓAW+W−
µ ν σ H =

1
16π2

eg2

12
MLµ ν σ

{
2∆ε − log 2m

2
H+ +m2

Ho

3µ2
o

− log 2m
2
H+ +m2

Ao

3µ2
o

}
,

(A.19)

∆ΓZW+W−
µ ν σ H =

1
16π2

g3

6cW

MLµ ν σ

{
c2W∆ε − 1

2

× log m
2
H+ +m2

Ho +m2
Ao

3µ2
o

− c2W
4

×
(
log

2m2
H+ +m2

Ho

3µ2
o

+ log
2m2

H+ +m2
Ao

3µ2
o

)}
. (A.20)

Four-point functions

Finally, for the 4-point Green functions, ΓV1 V2 V3 V4
µ ν σ λ , with

ingoing momenta assignments V µ
1 (−p), V ν

2 (−k), V σ
3 (−r)

and V λ
4 (−t) we have obtained the results presented below.

The tree level corresponding contributions different from
zero are:

ΓAAW+W−
0µ ν σ λ = −e2ßµνσλ,

ΓAZW+W−
0µ ν σ λ = −g2sW cWßµνσλ ,

ΓZZW+W−
0µ ν σ λ = −g2c2Wßµνσλ,

ΓW+W−W+W−
0µ ν σ λ = g2ßµσνλ , (A.21)

where ßµσνλ is defined by,

ßµ ν σ λ ≡ [2gµ νgσ λ − gµσgν λ − gµλgν σ] , (A.22)

and the exact results for the one-loop contributions of the
heavy Higgs sector, ∆ΓV1 V2 V3 V4

µ ν σ λ H , are the following:

∆ΓAAW+W−
µ ν σ λ H

=
e2g2

16π2

{
gµνgσλJ

11
p+k +

1
4
(
gµσgνλJ

14
p+r + gνσgµλJ

14
k+r

)

+
s2
αβ

4
(
gµσgνλJ

31
p+r + gνσgµλJ

31
k+r

)− 1
2
gσλ
[
J111
µν + J111

νµ

]
−s2

αβ

4
[
gσνJ

113
µλ + gσµJ

113
νλ + gλνJ

113
µσ + gλµJ

113
νσ

]
−1
4
[
gσνJ

114
µλ + gσµJ

114
νλ + gλνJ

114
µσ + gλµJ

114
νσ

]
−s2

αβ

2
gµνJ

311
λσ − 1

2
gµνJ

141
λσ

+
s2
αβ

4
J1113
µνλσ +

1
4
[
J1141
µλσν + J1141

µσλν

]}
, (A.23)

∆ΓAZW+W−
µ ν σ λ H

=
eg3

32π2cW

{
c2WgµνgσλJ

11
p+k − s2

W

2
(
gµσgνλJ

14
p+r

−gνσgµλJ
14
k+r

)− s2
αβs

2
W

2
(
gµσgνλJ

31
p+r − gνσgµλJ

31
k+r

)
−c2W

2
gσλ
[
J111
µν + J111

νµ

]
+

s2
αβs

2
W

2
[
gνλJ

113
µσ + gνσJ

113
µλ

]
−s2

αβ c2W

4
[
gµλJ

113
νσ + gµσJ

113
νλ

]
+
s2

W

2
[
gνλJ

114
µσ + gνσJ

114
µλ

]
−c2W

4
[
gµλJ

114
νσ + gµσJ

114
νλ

]− s2
αβc2W

2
gµνJ

311
λσ

−c2W

2
gµνJ

141
λσ +

s2
αβ

4
[
gµλJ

134
νσ + gµσJ

134
νλ + gµλJ

431
νσ

+gµσJ431
νλ

]
+

s2
αβ c2W

4
[
J1113
µνσλ + J1113

µνλσ

]
+

c2W

4
[
J1141
µλσν

+J1141
µσλν

]− s2
αβ

4
[
J1134
νσµλ + J1134

νλµσ

]}
, (A.24)

∆ΓZZW+W−
µ ν σ λ H

=
g4

64π2c2W

{
c22WgµνgσλJ

11
p+k +

1
2
gµνgσλ

[
J33
p+k + J44

p+k

]
+s4

W

(
gµσgλνJ

14
p+r + gµλgνσJ

14
k+r

)
+ s2

αβs
4
W

(
gµσgλνJ

31
p+r

+gµλgνσJ31
k+r

)− c22W

2
gσλ
[
J111
µν + J111

νµ

]− s2
αβ

2
gµν J

133
σλ

−1
2
gµν J

414
σλ +

s2
αβ s

2
W c2W

2
[
gµλJ

113
νσ + gνλJ

113
µσ + gµσJ

113
νλ

+gνσJ113
µλ

]
+

s2
W c2W

4
[
gµλJ

114
νσ + gνλJ

114
µσ + gµσJ

114
νλ

+gνσJ114
µλ

]− s2
αβ

2
(
gσλ J

434
µν + gσλ J

343
µν

)− c22W

2
gµν J

141
λσ

−s2
αβs

2
W

2
[
gνλJ

431
µσ + gµλJ

431
νσ + gνσJ

431
µλ + gµσJ

431
νλ

+gµλJ134
νσ + gνλJ

341
µσ + gµσJ

134
νλ + gνσJ

341
µλ

]
+
s2
αβc

2
2W

4
[
J1113
µνσλ + J1113

µνλσ

]
+

c22W

4
[
J1141
µλσν + J1141

µσλν

]
+
s2
αβ

4
[
J4341
µνσλ + J4341

µνλσ

]
+

s4
αβ

4
[
J3431
µνσλ + J3431

µνλσ

]
−s2

αβ c2W

4
[
J4311
νσµλ + J4311

µσνλ + J4311
νλµσ + J4311

µλνσ

]}
, (A.25)

∆ΓW+W−W+W−
µ ν σ λ H

=
g4

64π2

{
gµνgσλ

[
J11
p+k +

1
2
J33
p+k +

1
2
J44
p+k

]
+ gσνgµλ

×
[
J11
k+r +

1
2
J33
k+r +

1
2
J44
k+r

]
+
1
2
[
gνσJ

414
µλ − gνµJ

414
σλ

−gλσJ
414
µν + gλµJ

414
σν

]− s2
αβ

2
[
gνσ

(
J313
µλ + J131

λµ

)
+gνµ

(
J313
σλ + J131

λσ

)
+ gλσ

(
J313
µν + J131

νµ

)
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+gλµ
(
J313
σν + J131

νσ

)]− s2
αβ

2
[− gνσJ

141
λµ + gνµJ

141
λσ

+gλσJ141
νµ − gλµJ

141
νσ

]
+

s4
αβ

4
[
J3131
µνσλ + J1313

µλσν + J1313
µσνλ

+J1313
µσλν

]
+
1
4
[
J4141
µνσλ + J1414

µλσν + J1414
µσνλ + J1414

µσλν

]
+
s2
αβ

4
[
J1413
µλσν + J3141

µλσν + J1314
µλσν + J4131

µλσν − J1314
µσλν − J1314

µσνλ

−J1413
µσλν − J1413

µσνλ

]}
. (A.26)

Here, J ijp+k , J
ijk
µν and J ijklµνσλ are the one-loop integrals

given in [34].
The asymptotic results of the above contributions in

the decoupling limit can be written as:

∆ΓAAW+W−
µ ν σ λ H

=
e2g2

16π2

{
− ßµνσλ 16∆ε + gµ ν gσ λ g1(mH+ ,mHo ,mAo)

+(gµσ gν λ + gµλgν σ) g2(mH+ ,mHo ,mAo)
}

(A.27)

∆ΓAZW+W−
µ ν σ λ H

= − eg3

16π2

1
2 cW

{
ßµνσλ

c2W
3
∆ε + gµ ν gσ λ

×g3(mH+ ,mHo ,mAo)

+(gµσ gν λ + gµλgν σ) g4(mH+ ,mHo ,mAo)
}

(A.28)

∆ΓZZW+W−
µ ν σ λ H

= − g4

16π2

1
2 c2W

{
ßµνσλ

c4W
3
∆ε + gµ ν gσ λ

×g5(mH+ ,mHo ,mAo)

+(gµσ gν λ + gµλgν σ) g6(mH+ ,mHo ,mAo)
}

(A.29)

∆ΓW+W−W+W−
µ ν σ λ H

=
g4

16π2

1
4

{
ßµσνλ

2
3
∆ε + gµσ gν λ g7(mH+ ,mHo ,mAo)

+(gµ ν gσ λ + gµλgν σ) g8(mH+ ,mHo ,mAo)
}

(A.30)

where the gi(mH+ ,mHo ,mAo) (i = 1 . . . 8) functions are
given by,

g1 =
1
2
log

2m2
H+ +m2

Ao

3µ2
o

+
1
2
log

2m2
H+ +m2

Ho

3µ2
o

− 3
1
3
log

3m2
H+ +m2

Ao

4µ2
o

− 1
3
log

3m2
H+ +m2

Ho

4µ2
o

,

g2 = −1
4
log

m2
H+ +m2

Ao

2µ2
o

− 1
4
log

m2
H+ +m2

Ho

2µ2
o

+
1
2
log

2m2
H+ +m2

Ao

3µ2
o

+
1
2
log

2m2
H+ +m2

Ho

3µ2
o

− 1
3
log

3m2
H+ +m2

Ao

4µ2
o

− 1
3
log

3m2
H+ +m2

Ho

4µ2
o

,

g3 = −c2W

2
log

2m2
H+ +m2

Ao

3µ2
o

− c2W

2
log

2m2
H+ +m2

Ho

3µ2
o

+
c2W

3
log

3m2
H+ +m2

Ao

4µ2
o

+
c2W

3
log

3m2
H+ +m2

Ho

4µ2
o

− 1
3
log

2m2
H+ +m2

Ho +m2
Ao

4µ2
o

,

g4 = −s2
W

2
log

m2
H+ +m2

Ao

2µ2
o

− s2
W

2
log

m2
H+ +m2

Ho

2µ2
o

+
(
s2

W − 1
4

)
log

2m2
H+ +m2

Ho

3µ2
o

+
(
s2

W − 1
4

)

× log
2m2

H+ +m2
Ao

3µ2
o

+
c2W

3
log

3m2
H+ +m2

Ho

4µ2
o

+
c2W

3

× log
3m2

H+ +m2
Ao

4µ2
o

+
1
2
log

m2
H+ +m2

Ho +m2
Ao

3µ2
o

− 1
3
log

2m2
H+ +m2

Ho +m2
Ao

4µ2
o

,

g5 =
1
4
log

m2
Ho

µ2
o

+
1
4
log

m2
Ao

µ2
o

− 1
4
log

2m2
Ho +m2

H+

3µ2
o

− 1
4
log

2m2
Ao +m2

H+

3µ2
o

− c22W

4
log

2m2
H+ +m2

Ao

3µ2
o

− c22W

4

× log
2m2

H+ +m2
Ho

3µ2
o

− 1
4
log

m2
Ho + 2m2

Ao

3µ2
o

− 1
4

× log
2m2

Ho +m2
Ao

3µ2
o

+
c22W

6
log

3m2
H+ +m2

Ho

4µ2
o

+
c22W

6

× log
3m2

H+ +m2
Ao

4µ2
o

+
1
6
log

m2
H+ +m2

Ho + 2m2
Ao

4µ2
o

+
1
6
log

m2
H+ + 2m2

Ho +m2
Ao

4µ2
o

− c2W

3
log

2m2
H+ +m2

Ho +m2
Ao

4µ2
o

,

g6 =
s4

W

2
log

m2
Ho +m2

H+

2µ2
o

+
s4

W

2
log

m2
Ao +m2

H+

2µ2
o

− s2
W

× log
m2

H+ +m2
Ho +m2

Ao

3µ2
o

+ s2
W

c2W

2
log

2m2
H+ +m2

Ao

3µ2
o

+ s2
W

c2W

2
log

2m2
H+ +m2

Ho

3µ2
o

+
c22W

6
log

3m2
H+ +m2

Ho

4µ2
o

+
c22W

6
log

3m2
H+ +m2

Ao

4µ2
o

− c2W

3

× log
2m2

H+ +m2
Ho +m2

Ao

4µ2
o

+
1
6
log

m2
H+ +m2

Ho + 2m2
Ao

4µ2
o

+
1
6
log

m2
H+ + 2m2

Ho +m2
Ao

4µ2
o

,
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g7 = −2
3
log

m2
Ho +m2

H+

2µ2
o

− 2
3
log

m2
Ao +m2

H+

2µ2
o

g8 = − log m
2
H+

µ2
o

− 1
2
log

m2
Ho

µ2
o

− 1
2
log

m2
Ao

µ2
o

+ log
2m2

Ho +m2
H+

3µ2
o

+ log
2m2

H+ +m2
Ho

3µ2
o

+ log
2m2

Ao +m2
H+

3µ2
o

+ log
2m2

H+ +m2
Ao

3µ2
o
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. (A.31)

Notice that all these gk functions behave in the decoupling
limit generically as,

gk(mH+ ,mHo ,mAo) = O

(
log

m2
Ao

µ2
0

)
+O

(
∆m2

Σm2

)
(A.32)

and the differences ∆m2 vanish in the present case of the
heavy MSSM Higgs sector in the asymptotic limit.
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